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Abstract
Purpose We have previously developed grading metrics to objectively measure endoscopist performance in endoscopic
sleeve gastroplasty (ESG). One of our primary goals is to automate the process of measuring performance. To achieve this
goal, the repeated task being performed (grasping or suturing) and the location of the endoscopic suturing device in the
stomach (Incisura, Anterior Wall, Greater Curvature, or Posterior Wall) need to be accurately recorded.
Methods For this study, we populated our dataset using screenshots and video clips from experts carrying out the ESG
procedure on ex vivo porcine specimens. Data augmentation was used to enlarge our dataset, and synthetic minority over-
sampling (SMOTE) to balance it. We performed stomach localization for parts of the stomach and task classification using
deep learning for images and computer vision for videos.
Results Classifying the stomach’s location from the endoscope without SMOTE for images resulted in 89% and 84% testing
and validation accuracy, respectively. For classifying the location of the stomach from the endoscope with SMOTE, the
accuracies were 97% and 90% for images, while for videos, the accuracies were 99% and 98% for testing and validation,
respectively. For task classification, the accuracies were 97% and 89% for images, while for videos, the accuracies were 100%
for both testing and validation, respectively.
Conclusion We classified the four different stomach parts manipulated during the ESG procedure with 97% training accuracy
and classified two repeated tasks with 99% training accuracy with images. We also classified the four parts of the stomach
with a 99% training accuracy and two repeated tasks with a 100% training accuracy with video frames. This work will be
essential in automating feedback mechanisms for learners in ESG.

Keywords Endoscopic simulator · Endoscopic sleeve gastroplasty · Anatomical localization · Data augmentation · Deep
learning · Artificial intelligence

Introduction

The endoscopic sleeve gastroplasty (ESG)procedure lacks an
objective automated training platform.Currently, the primary
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training method is ad hoc training by physicians partici-
pating in industry-sponsored or society-sponsored courses
that teach the steps of endoscopic suturing and ESG, usu-
ally initially in inanimate or ex vivo porcine specimens.
Some learners undergo proctored fellowships in endoscopic
bariatric endoscopy, but this is a rare exception. There is a
need formore repetitive hands-on trainingwith tailored feed-
back. Our long-term goal is to create a virtual reality (VR)
simulator for training endoscopists to perform the ESG pro-
cedure with automated assessment to fulfill the need for a
more effective training method.

Our previous studies were executed in the stride toward
this goal, where we created a task analysis and objective
performance metrics for the ESG procedure [1, 2]. As we
are building our simulator, we noticed that an automated
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approach to scoring the surgeons was missing from the liter-
ature, and the ESG procedure was currently being manually
graded. We want to introduce an approach for automatic
grading of the ESG procedure to the literature. Even though
there are different approaches to carry out the ESG proce-
dure, marking and suturing tasks are the two vital steps each
surgeon must complete. It can be difficult during the proce-
dure, with distortion/suturing of the stomach into a tubular
organ, to keep orientation clear. To automate the VR trainer
simulator grading, we create classifiers that can identify the
different parts of the stomach and the two tasks in the ESG
procedure. To grade the ESG procedure, four main parts of
the stomach are necessary to identify: the angularis incisura,
the starting point of the ESG procedure, the anterior wall, the
greater curvature, and the posterior wall. During the proce-
dure, the endoscopist performs two main tasks: grasping and
suturing, in the correct order. Manual assessment is a labor-
intensive and time-consuming process. Automatic grading
provides instant and objective feedback to trainees. It elim-
inates the need for a manual scoring process, saving time
and allowing for a seamless training experience. Automatic
scoring can be more accurate and consistent, ensuring fair
evaluation for all trainees.

Additionally, it enhances the learning process by offering
immediate feedback, allowing trainees to understand their
mistakes in real time. It also enables adaptive learning, where
the difficulty level can be adjusted based on the trainee’s per-
formance, optimizing the training experience.Data shows the
amount of stomach tubularized does correlate with weight
loss in ESG procedures [3]. Thus, detecting the device’s
location in the stomach via this technique would provide
immediate feedback to the learner. Also, it has been pre-
viously described that procedure time for ESG is shorter,
and efficacy is improved by not suturing the fundus during
ESG [4]. Thus, the analysis of location for this concept is
also vital for the learner.

The contribution of this study is threefold; data aug-
mentation to create a larger dataset, synthetic minority
oversampling (SMOTE) for balancing the dataset, and con-
volutional neural networks (CNN) for classification. The
classification included tasks: (a) grasping and (b) suturing,
and stomach locations: (a) angularis incisura, (b) anterior
wall, (c) greater curvature, and (d) posterior wall for image
and video datasets. Data augmentation is a process used to
expand a dataset using techniques such as rotating, flipping,
and cropping deep learning input images. Data augmentation
is effective in image classification by increasing the dataset
and reducing overfitting [5]. SMOTE is an oversampling
technique used to balance the dataset. Having an imbalanced
dataset causes bias within a model [6]. CNNs are neural net-
works where the layers are the convolutions of their previous
layers [7]. The CNN will start by learning attributes such as

edges and hue, then slowly learning full objects over multi-
ple layers/filters [8]. As mentioned above, we will use CNNs
to identify specific parts of the stomach and which task is
being performed to classify four parts of the stomach and
differentiate between grasping or suturing tasks.

This work’s literature spans multiple techniques, includ-
ing synthetic data generation, classification, and localization.
In a paper by Hussain et al. [9], they compared different data
augmentation techniques onmedical data to determinewhich
strategy works the best on medical data. They determined
that shear had the highest training accuracy (89%), while
Gaussian filters (88%) and rotation (88%) had the highest
validation accuracy. All the techniques ranged in the 80 s in
accuracy except for noise and powers. Although they showed
which techniques resulted in higher accuracy, none of the
accuracies reached 90%, which shows that some other por-
tion of their study is lacking. One potential cause is that the
study does not specify the type of medical imaging used,
which can result in a lack of focus and reduced classification
accuracy.

In a study byMikolajczyk et al. [10], data augmentation is
used to enlarge a dataset of three medical case studies: skin
melanoma diagnosis, histopathological images, and breast
magnetic resonance imaging (MRI) scans. They used a new
data augmentation method claiming that although standard
data augmentation methods are proven to increase the train-
ing dataset, they are susceptible to adversarial attacks. In
our study, we are not particularly concerned with this issue.
Taylor et al. [11] performed a benchmark study on the differ-
ent types of data augmentation. They found that geometric
augmentation methods outperformed photometric methods
when training on a coarse-grained data set. This study backs
the use of geometric augmentation in our study.

Takiyama et al. [12] used CNNs to identify the anatomi-
cal location of esophagogastroduodenoscopy (EGD) images.
This study also used four main categories for EGD imaging:
the larynx, esophagus, stomach (upper, middle, lower), and
duodenum. This study had 16,632 images and was classi-
fied with 97% accuracy. Although this study achieved high
accuracy, it was explicitly written for EGD images, leaving it
slightly generic to score the ESG procedure. This paper was
written from the perspective of diagnosis rather than training.
In a paper by Cetinsaya et al. [8], colorectal lesions are clas-
sified by comparing multiple transfer learning methods. The
deep learning models they used are GoogLeNet, AlexNet,
and InceptionV3, all deep learning models that use CNNs.
They achieved the highest accuracy of their study with 92%
by using inceptionV3.

In a study by Li et al. [13], CNN was used to classify lung
image patches with interstitial lung disease. This study used
what Li et al. considered a relatively small dataset (16,220
image patches) with non-distinct visual structures; therefore,
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they designed their CNN to have dropout and single convolu-
tional layers to avoid overfitting. One issue with this study is
that they only recorded the recall and precision results but not
the model’s accuracy. Although the accuracy can be derived
from these two measures, the precision and recall alone do
not account for the correct classification of negative sam-
ples (true negatives); therefore, they should not be the only
statistic used to measure the model’s validity.

In a paper by Shaju et al. [14], the authors used SMOTE
with decision trees to classify diabetes prognosis. The dataset
they used contained 734 patient records from a diagnostics
laboratory, where the data had 11 attributes (age, plasma
glucose fasting, postprandial glucose level taken 2 h after a
meal, BMI, systolic blood pressure, diastolic blood pressure,
waist thickness, HbA1c value, family diabetic history, dia-
betic or non-diabetic). This was nine numerical attributes and
two nominal attributes. The classifier obtained 92% accuracy
before SMOTEwhile obtaining 94% accuracy after SMOTE.
This study used SMOTE on numerical data rather than image
data.

In a study by Bellinger et al. [15], they created a new
version of SMOTEcalledmanifold-based synthetic oversam-
pling. They created this because they found that SMOTE
is used on specific datasets, with a significant difference
between group sizes, making SMOTE error-prone. They
claim that SMOTE does not reach its full potential on these
datasets. Since our datasets do not contain a significant imbal-
ance, we do not need to adopt these practices, as this paper
suggests.

Abeysinghe et al. [16] found that SMOTEwith eight near-
est neighbors resulted in the highest accuracy in combination
with principal component analysis (PCA) for image segmen-
tation. This was compared to under-sampling SMOTE with
the four nearest neighbors, each with either FCM or PCA.
Although this study provides insight into multiple sampling
techniques, we did not use image segmentation in our study.

Methods

The IndianaUniversityHumanResearch Protection Program
has determined the project does not require an IRB review
due to the project not involving human subjects.

In this section, we describe the methods used for clas-
sification using images and videos. These methods start
with collecting the data and end with validating our model.
Figure 1 shows theworkflow of our system to classify images
and videos. Our system has twomain parts: (a) preprocessing
and (b) classification.

In preprocessing, the first process for image classification
is capturing images from videos and then resizing them to
ensure they are all the same size—128× 128 pixels. Once the

images are resized, they can be sent through the data augmen-
tation process, and if the data set is imbalanced, the data set
is balanced using SMOTE. Once the data has been through
preprocessing, the data set can be used for classification. For
classification, data goes through model training and model
validation steps. The processes for stomach localization and
task classification are slightly different. For localization, due
to our dataset being imbalanced, the dataset goes through the
entire process, including the path from data augmentation
through balance data using SMOTE. Our task classification
dataset is already balanced, which allows us to bypass the
balance data step using the SMOTE process and continue
from data augmentation to classification.

For video classification, the first process is to clip the
expert video into labeled parts, explained in detail below.
The second process is to extract the frames of the videos at
a frame rate of five and then save those images. The third
process is to resize the images, so they are all the same and
run smoothly through the model. We chose to go with an
image size of 128× 128 pixels. Once the images are resized,
SMOTE can be applied to balance the dataset. Once the data
has been through this preprocessing, the data set can be used
for classification.

Data collection

For our previous study [17], we collected seven videos (four
experts and three novices) of the ESG procedure performed
in ex vivo porcine specimens. We captured 62 screenshots of
the four relevant stomach parts for the image classification
necessary for ESGgrading. Of these 62 screenshots, tenwere
of the angularis incisura (Fig. 2a), 20were of the anteriorwall
(Fig. 2b), 17 were of the greater curvature (Fig. 2c), and 15
were of the posterior wall (Fig. 2d).

For video classification, we captured a single video for
each of the four relevant parts of the stomach necessary for
ESG grading. Of these four videos, the angularis video was
17 s, the anterior wall video was 13 s, the greater curva-
ture video was 19 s, and the posterior wall video was 13 s.
The videos were then converted into frame-by-frame images,
resulting in 515 angularis, 390 anterior wall, 587 greater cur-
vature, and 402 posterior wall images.

For the classification of the tasks, we captured 100 screen-
shots for image classification, which included 50 each of
grasping (Fig. 3a) and suturing tasks (Fig. 3b). We captured
two videos of grasping and suturing tasks for video classifi-
cation. Both videos were 28 s in length. This resulted in 857
images for grasping and 853 images for suturing.

Data augmentation

For image classification, we used data augmentation, which
includes rotations, flips, and zoom-ins, to create a more
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Fig. 1 Overall study design for image and video classification

extensive and well-versed dataset. When performing data
augmentation on our 62 images of the stomach parts, we
ended up with 914 images. These 914 images are broken
down where 157 are of the angularis, 330 are of the ante-
rior wall, 225 are of the greater curvature, and 202 are of the
posterior wall. Figure 4 shows an example image after the
augmentation of the angularis.

For the grasping and suturing tasks, we performed the
samedata augmentation (rotations, flips, zoom-in, etc.) on the
100 images of suturing and grasping. This process provided
us with 632 images, including an even 316 in each category.
Figure 5 shows an example image after the augmentation of
the grasping task.

Convolutional neural networks

For stomach localization using images, we used 914 images;
for the video data, we used a balanced dataset of 2,348
images. For task classification using images, we used 632
images, and for video classification, a balanced dataset of
1714 images. We ran them through the same sequential con-
volutional neural network. The model we used had three 2D

convolutional layers, threemax-pooling layers, three dropout
layers, a flattened layer, and two dense layers. We used a
learning rate of 0.001, allowing for a steady increase in accu-
racy. The CNN architecture used in the study is depicted in
Fig. 6.

SMOTE

For the image classification, due to our dataset for the local-
ization portion of this study being imbalanced, we decided to
use SMOTE. We ran our newly created 914 images through
SMOTE, which gave us 1,320 total images, where each part
of the stomach contains 330 images. Since the largest orig-
inal group was the anterior wall with 330 samples, all the
other groups were balanced to the same number of samples
in this dataset to 330 images. Using SMOTE was unneces-
sary for this study’s task classification since the two groups
were balanced.

For video classification, we ran our newly created 1894
frames through SMOTE, which gave us 2,348 total images,
where each part of the stomach contains 587 images. Since
the largest original group was the greater curvature with 587
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Fig. 2 a Angularis incisura,
b anterior wall, c greater
curvature, and d posterior wall

Fig. 3 a Grasping task,
b suturing task
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Fig. 4 Image after the augmentation of the angularis

Fig. 5 Image after the augmentation of the grasping task

samples, all the other groups were balanced to the same num-
ber of samples in this dataset to 587 images. We also used
SMOTE for task classification, which balanced our dataset
from 857 grasping and 853 suturing to 857 grasping and 857
suturing images.

Results

CNN localization classification before SMOTE

For image classification, the CNN model for classifying the
location of the stomach from the endoscope without SMOTE
resulted in an 89% testing accuracy with a validation accu-
racy of 84%. This model’s accuracy and loss before SMOTE
can be seen in Fig. 7a, b, respectively. In Fig. 7a, the model’s
training accuracy stays linear after a significant spike from
0 to 65%. There are minimal spikes with a learning rate of
0.001 and dropout layers. The validation accuracy had a few
more spikes, especially around the 35th epoch, but remained
linear.We determined that wewould use 40 epochs due to the
plateau in validation accuracy after about 36 epochs. After
determining this from the first model, we kept 40 epochs as
a constant.

The loss is shown below in Fig. 7b, where the loss rapidly
decreased until about 0.7 and gradually decreased. We saw
the same spike in Fig. 7a but for loss around epoch 35. The
spikes can be flattened through a lower learning rate but
would hinder the model’s performance, failing to train.

Fig. 6 Convolutional neural network architecture
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Fig. 7 Training versus validation a accuracy for ESG localization before SMOTE and b loss for ESG localization before SMOTE

Fig. 8 Training versus validation a accuracy for ESG localization after SMOTE and b loss for ESG localization after SMOTE

Fig. 9 Training versus validation a accuracy for ESG localization and b loss for ESG localization
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Fig. 10 Image classification—training versus validation a accuracy for grasping versus suturing and b loss for grasping versus suturing

Fig. 11 Video classification—training versus validation a accuracy for grasping versus suturing and b loss for grasping versus suturing

CNN localization classification after SMOTE

For image classification, after balancing the dataset with
SMOTE and running the data through the same model, the
accuracy was 97%, with a validation accuracy of 90%. The
accuracy and loss for this model with SMOTE can be seen in
Fig. 8a, b, respectively. In Fig. 8a, the training and validation
accuracies are much more linear, resulting in fewer spikes
than the model without SMOTE. Not only does the accuracy
reflect the significance of SMOTE, but having a balanced
dataset also results in more occasional spikes during learn-
ing.

In Fig. 8b, the loss is shown. There are more spikes in the
validation loss compared to the validation accuracy. The issue
is due to possible overfitting caused by the number of epochs,
which is 35.Although thismaybe the case, themodel corrects
itself after epoch 35, resulting in higher accuracy. Since the
model continued to increase in accuracy, we neglected this
idea rather than cutting it off at 35 epochs.

For video classification, when balancing the dataset with
SMOTE and running the data through the CNN model, the
training accuracy was 99%, with a validation accuracy of
98%. Figure 9a, b shows the accuracy and loss with SMOTE.
As seen in Fig. 9a, the training and validation accuracies have
linear shapes, resulting in a few spikes, indicating a robust
model. The loss for training and validation is a smooth drop
throughout the model. This shows that the model did not
overfit, as seen in Fig. 9b.

CNN grasping and suturing task classification

For image classification of grasping and suturing, themodel’s
accuracy was 97%, with a validation accuracy of 89%. This
model was already balanced; therefore, there was no need to
compare before and after SMOTE. The training accuracy is
much more gradual than the validation accuracy, as seen in
Fig. 10a. The validation accuracy began to plateau around 15
epochs. In this part of the study, we used 33 epochs due to
this validation plateau.
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The training loss gradually went to zero, while the valida-
tion loss rose, as seen in Fig. 10b. This validation loss shows
some overfitting. Around epoch 15, the validation loss began
to rise, indicating an overfitting problem. In our initial anal-
ysis, an overfitting challenge was encountered. To address
this issue, we augmented the dataset size from 632 to 1131
instances. Additionally, we added regularization terms (L1
and L2), introduced dropout layers, and adjusted the learn-
ing rate to a lower value of 0.001.

For video classification of grasping and suturing use, the
model’s accuracy was 100%, with a validation accuracy of
100%. This model was nearly balanced, but we still decided
to use SMOTE moving up from 1710 (grasping (857), sutur-
ing (853)) images to 1714 (grasping (857), suturing (857)).
Figure 11a shows a strong accuracy throughout the whole
model, especially during the validation phase.

Figure 11b shows the loss for both training and validation.
The model has very few spikes, with only two significant
spikes in training loss and one significant spike in validation
loss. With a learning rate of 0.001 and 3 dropout layers, this
model does not overfit or underfit and is ready for real-world
data.

Conclusion

In this study, we collected four different datasets. The first
two datasets were of four different stomach parts (incisura
angularis, anteriorwall, greater curvature, and posteriorwall)
to determine the endoscope’s location in the stomach dur-
ing the ESG procedure. The third and fourth data sets were
collected to determine whether the endoscopist was grasp-
ing or suturing. A potential limitation in our study is due to
the restricted number of videos utilized for the deep learn-
ing algorithm. To address this issue, we implemented data
augmentation techniques. We applied two methods, the first
being the use of images and the second being the use of
video frames. Using video frames with computer vision pro-
vided a better dataset, resulting in higher accuracy for both
stomach location (8% higher) and task classification (11%
higher). SMOTE increased the testing accuracy for image
classification by 6%, going from 84 to 90%.All classification
algorithms were written as a preliminary study toward build-
ing an ESG virtual reality training simulator. This simulator
will objectively give feedback to the learner and provide an
automated training score that can be tracked over time and
archived for review of mentors. In conclusion, we demon-
strated that combining data augmentation and SMOTE could
be used to enlarge and balance a dataset to classify ESG data
with a CNN.
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